17.06.2019 09:09
Новости.
Просмотров всего: 3714; сегодня: 2.

Нейросеть научили распознавать отредактированные в фотошопе лица

Нейросеть научили распознавать отредактированные в фотошопе лица

Американские разработчики создали алгоритм, способный обнаруживать изменение лица с помощью одного из инструментов редактора Adobe Photoshop с точностью 93,9 процента, сообщает N+1. Кроме того, благодаря вычислению оптического потока между оригинальным и отретушированным кадрами алгоритм может воссоздать оригинальный снимок, рассказывают авторы статьи, опубликованной на arXiv.

Развитие алгоритмов для обработки изображений привело в том числе и к тому, что их стали использовать для создания крайне реалистичных «фейковых» фотографий. К примеру, широкую известность получили алгоритмы, собирательно называемые deepfakes по имени разработчика, опубликовавшего примеры роликов, в которых лица людей были достаточно реалистично заменены на другие. Подобные технологии вызвали широкий общественный резонанс, в результате которого некоторые крупные интернет-сервисы запретили контент такого типа, а исследователи в области алгоритмов для работы с изображениями сконцентрировались на создании защиты от «фейков».

В своей работе разработчики из Калифорнийского университета в Беркли и компании Adobe под руководством Алексея Эфроса (Alexei Efros) создали алгоритм для определения изменения лица на фотографии с помощью популярного графического редактора Adobe Photoshop. Исследователи выбрали инструмент «Пластика с учетом лица», позволяющий редактировать конкретные части лица. Он самостоятельно распознает на снимке лицо и его основные части, а затем отображает ползунки для каждой из них, к примеру, для рта или носа, двигая которые пользователь может растягивать область на кадре нужным образом.

Алгоритм состоит из двух основных частей: нейросети для распознавания отредактированных изображений, а также нейросети для определения областей, подвергнутых редактированию. Для решения первой задачи разработчики использовали остаточную сверточную нейросеть ResNet-50, изначально обученную на популярном датасете ImageNet, а затем дообученную на созданном авторами датасете, состоящем из почти миллиона исходных и отредактированных изображений. Его они получили автоматически с помощью скрипта в графическом редакторе.

Разработчики оценили эффективность определения поддельных изображений алгоритмом и сравнили ее с эффективностью людей. Общая точность определения отредактированных с помощью функции «Пластика с учетом лица» изображений составила 93,9 процента. Также авторы оценили точность при выборе между обычным и отредактированным изображением. В таком случае точность алгоритма составила 99,4 процента, а точность добровольцев на платформе Amazon Mechanical Turk составила 53,5 процента.

Однако, пожалуй, главным новшеством работы является то, что авторы научили алгоритм определять, как именно было отредактировано изображение и даже восстанавливать оригинальный снимок. Для этого они использовали отдельную остаточную сверточную нейросеть DRN-C-26, которая так же была обучена на ImageNet и дообучена для выполнения новой задачи на новом датасете. Его исследователи составили из оригинальных изображений и отредактированных, для которых был рассчитан оптический поток, отражающий движение фрагментов изображения между двумя кадрами. В результате обучения нейросеть научилась определять оптический поток без исходного изображения и таким образом указывать на области, подвергнутые редактированию.

Кроме того, разработчики попробовали использовать алгоритм для восстановления исходного изображения. Для этого алгоритм использовал рассчитанный оптический поток, проводил обратное редактирование в выделенных областях и минимизировал оптический поток с помощью функции потерь. Авторы продемонстрировали общую применимость этого подхода, но отметили, что восстановленные алгоритмом изображения не полностью повторяют оригинал.

Это далеко не первый алгоритм для определения отредактированных в графическом редакторе изображений, в том числе среди разработанных специалистами из Adobe. В прошлом году они научили нейросеть распознавать снимки с удаленными или клонированными объектами, а также совмещение изображений с разных снимков. Кроме того, существует и алгоритм для работы с «фейковыми» видео с подменой лиц.


Нейросеть научили распознавать отредактированные в фотошопе лица

Нейросеть научили распознавать отредактированные в фотошопе лица

Нейросеть научили распознавать отредактированные в фотошопе лица


Ньюсмейкер: Национальное деловое партнерство "Альянс Медиа" — 12064 публикации
Поделиться:

Интересно:

325 лет назад Петр I издал указ о праздновании Нового года 1 января
20.12.2024 13:05 Аналитика
325 лет назад Петр I издал указ о праздновании Нового года 1 января
До конца XV века Новый год на Руси праздновали 1 марта. Эта точка отсчета была связана с тем, что в марте земля пробуждалась от зимнего "сна", начинался новый посевной сезон. С 1495 года Московский государь Иван III приказал перенести празднование Нового года на 1 сентября. Причин для...
19.12.2024 19:56 Интервью, мнения
Праздник к нам приходит: как поддержать атмосферу Нового Года в офисе
Конец года — самое жаркое время за все 12 месяцев, особенно для компаний. Нужно успеть закрыть все задачи, сдать отчёты, подготовить планы, стратегии и бюджеты. И, конечно же, не забывать про праздник, ведь должно же хоть что-то придавать смысл жизни в декабре, помимо годового бонуса.  Не...
Прозвища бумажных денег — разнообразные и многоликие
19.12.2024 18:17 Аналитика
Прозвища бумажных денег — разнообразные и многоликие
Мы часто даем прозвища не только знакомым людям и домашним питомцам, но и вещам, будь то автомобили, компьютеры, телефоны… Вдохновляемся цветом или формой, называем их человеческими именами и даем понять, что они принадлежат только нам и имеют для нас...
Советская военная контрразведка
19.12.2024 17:51 Аналитика
Советская военная контрразведка
Советская военная контрразведка появилась в годы Гражданской войны и неоднократно меняла свою подчиненность, входя то в структуру военного ведомства, то в госбезопасность. 30 мая 1918 г. учрежден первый орган военной контрразведки Красной армии – Военный контроль Оперативного отдела Народного...
Защитить самое ценное: История страхования в России
18.12.2024 13:22 Аналитика
Защитить самое ценное: История страхования в России
С давних времен человек стремится перехитрить свою судьбу. Люди желают знать, что будет, чтобы вовремя подготовиться к возможным перипетиям и обезопасить свое будущее. Вот только карты и гадалки в этом вопросе бессильны, куда надежнее справиться с рисками помогают...